М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
karinasing
karinasing
31.03.2022 05:25 •  Геометрия

Докажите что углы при основании равнобедренного треугольника равны

👇
Ответ:
Алисика11
Алисика11
31.03.2022

Ну это прям доказательство надо расписывать( по теореме 19 Углы при основании равнобедренного треугольника равны. Ну впрочем, опусти высоту на основание треугольника. И она разделит треугольник на две равные части (по гипотенузе и катету), а значит соответственные углы равны. Ну а признаки про равнобедр. треуг. идут из теоремы:

Сумма длин двух любых сторон треугольника больше длины третьей стороны этого треугольника. (a + b > c, где с – наибольший из трех отрезков).

Доказательство:  Пусть FCD - треугольник. Докажем, что FC + FD > CD. Опустим из вершины C этого треугольника высоту CH. Рассмотрим два случая: 1) Точка H принадлежит отрезку CD, или совпадает с его концами. В этом случае FC>HC и FD>HD, так как длина наклонной больше длины проекции наклонной. Сложив эти неравенства, получаем FC + FD > CH + HD = CD. Ч.Т.Д.

4,7(84 оценок)
Открыть все ответы
Ответ:
valeralera200
valeralera200
31.03.2022
В треугольнике: катеты а и b, гипотенуза  с, прямой угол С,
R - радиус описанной окружности, r- радиус вписанной окружности.
Начнём с описанной окружности. Поскольку  угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R
Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r.
Тогда отрезки катетов, прилегающих к вершинам острых углов, равны
 (а - r) и (b - r).
Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r).
Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r.
Но ранее мы получили, что с = 2R
Тогда 2R = a + b - 2r
2R + 2r = a + b
R + r = 0.5(a + b) что и требовалось доказать.
4,6(31 оценок)
Ответ:
В треугольнике: катеты а и b, гипотенуза  с, прямой угол С,
R - радиус описанной окружности, r- радиус вписанной окружности.
Начнём с описанной окружности. Поскольку  угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R
Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r.
Тогда отрезки катетов, прилегающих к вершинам острых углов, равны
 (а - r) и (b - r).
Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r).
Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r.
Но ранее мы получили, что с = 2R
Тогда 2R = a + b - 2r
2R + 2r = a + b
R + r = 0.5(a + b) что и требовалось доказать.
4,7(99 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ