Пусть A и B — две произвольные точки фигуры F.
При симметрии относительно прямой g фигуры F точка A переходит в точку A1, точка B — в точку B1. При этом AO=A1O, BO1=B1O1и прямая g перпендикулярна отрезкам AA1 и BB1.
Проведём отрезки AO1 и A1O1.
Прямоугольные треугольники AOO1 и A1OO1 равны по двум катетам, следовательно, AO1=A1O1 и ∠OAO1=∠OA1O1.
Прямые AA1 и BB1 параллельны по признаку параллельности прямых (как прямые, перпендикулярные одной и той же прямой g).
∠BO1A=∠OAO1 (как внутренние накрест лежащие при AA1 ∥ BB1 и секущей AO1)
по теореме косинусов можно сразу найти косинус угла СВD в треугольнике CBD:
Cos(CBD)=(BC²+BD²-CD²)/(2*BC*BD) или в нашем случае:
Cos(CBD)=(25+36-16)/60=3/4.
ответ: <CBD=arccos(3/4) или ≈41,4°.
Синус угла CBD равен sin(CBD)=√(1-9/16)=√7/4.
Диагональ делит параллелограмм на два равных треугольника, поэтому площадь параллелограмма равна Sabcd=2*Sbcd.
Scbd=(1/2)BC*BD*Sin(CBD) или Scbd=15√7/4.
Sabcd=2*15√7/4=15√7/2=7,5√7.
ответ: Sabcd=7,5√7.
Для проверки найдем по теореме косинусов в треугольнике АВD косинус угла А:
CosA=(16+25-36)/40=1/8.
SinA=√(1-1/64)=(√63)/8=(3√7)/8.
Тогда площадь параллелограмма равна
Sabcd=AB*AD*SinA или Sabcd=(20*3√7)/8=15√7/2=7,5√7.
ответ совпал с полученным ранее значением.