Высота трапеции равна диаметру вписанной окружности: ВН = СК = 7,5 · 2 = 15 см ΔАВН: ∠АНВ = 90°, по теореме Пифагора АН = √(АВ² - ВН²) = √(17² - 15²) = √(289 - 225) = √64 = 8 см ΔАВН = ΔDCK по катету и гипотенузе (АВ = CD по условию, ВН = СК как высоты трапеции), ⇒ DK = AH = 8 см
Если в четырехугольник вписана окружность, то суммы противоположных сторон равны: AD + BC = AB + CD = 17 + 17 = 34 см AD = AH + HK + KD = 8 + HK + 8 = HK + 16 Так как НК = ВС: AD + BC = 34 AD = BC + 16
2BC + 16 = 34 BC = (34 - 16)/2 = 18/2 = 9 см AD = 9 + 16 = 25 см
Пусть данная сфера касается стороны bcтреугольника abc в точке k. тогдаbk = bn = 1, am = an = 1, cm = 2 . am = 2, ck = cm= 2.сечение сферы плоскостью треугольника abcесть окружность, впмсанная в треугольник abc, причем центр o1 этой окружности - ортогональная проекция центра o сферы на плоскость треугольника abc. значит, oo1 - высота пирамиды oabc.пусть r - радиус окружности, вписанной в треугольник abc, p - ролупериметр треугольника, s - площадь. поскольку треугольник abc равнобедренный, отрезкок cn - его высота. тогдаcn =  =  = 2,s = ab . cn = 2, r = s/p = 2/4 = /2.из прямоугольного треугольника oo1nнаходим, чтоoo1 =  =  = 3/.следовательно,v(oabc) = s . oo1 = 2 . 3/ = 2.
Диамаетр шара:25+35=60 см