Радиус окружности ,описанной около правильного многоугольника со стороной 8 см , равен 4 корень из 2 найдите количество сторон данного многоугольника и радиус вписанной данного многоугольника
В основании правильной четырехугольной пирамиды лежит квадрат. Диагонали квадрата взаимно перпендикулярны и в точке пересечения делятся пополам. По Пифагору диагональ квадрата равна а√2, где а -сторона квадрата. Опустим из точки m перпендикуляр на основание пирамиды. Он "упадет" на диагональ db и разделит ее половину do пополам (так как dm=ms). Итак, md=2, dh=√2/2. По Пифагору mh=√(4-(1/2))=√3,5. Из подобия треугольников hmb и opb имеем: op/mh=ob/bh. Тогда op=√3,5√2/(√2+√2/2)= 2√7/3√2 =28/18 (возвели числитель и знаменатель в квадрат) = 14/9. ap - перпендикуляр к mb, то есть искомое расстояние (так как ao - проекция ар, а db - проекция mb на плоскость основания и эти проекции перпендикулярны). По Пифагору ap = √(ao²+op²) =√2+14/9 = 4√2/3. ответ: расстояние от a до прямой mb = 4√2/3.
Пусть MN - средняя линия трапеции (M∈AB, N∈CD). AC пересекает MN в точке О. По определению MN = (AD+BC) / 2, отсюда AD + BC = 14. Из условия AD - DC = 6. Составляем и решаем систему: AD + BC = 14, AD - DC = 6 Сложим левые и правые части, получим 2*AD = 20, AD = 10, отсюда BC = 10-6 = 4. MO и ON - отрезки, на которые AC делит ср. линию MN. MO параллельно BC, AM = MB (это по условию), значит по т. Фалеса AO = OC, т.е. MO - это средняя линия треугольника ABC, отсюда MO = BC / 2 = 4/2 =2. ON = MN - MO = 7 - 2 = 5. ответ: 2 см и 5 см