Найди площадь круга, выписанного в равнобедренную трапецию с основаниями длинной 4 см и 10 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr².
Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора ВК=√(9²-3²)=√72=6√2(см).
ВК-высота трапеции, значит r=ВК:2=3√2(см).
S(круга)= π ( 3√2 )²=18π (см²)
Объяснение:
Нам дан равнобедренный треугольник. Мы знаем, что в равнобедренном треугольнике углы три основании равны т.е <A=<C которые мы обозначим за x.
Найдем эти два угла:
Мы знаем, что сумма всех углов треугольника равна 180°
Составим уравнение:
x+x+<B=180°. (<B=40° по условию)
2x+40=180
2x=180-40=140
x=70°
Мы нашли углы <A и <C, но нам нужно найти часть угла <A (см свой рисунок)
<XAC = 15
<XAB = *неизвестно* - обозначим за x
<A = 70° - это полный угол
Составим уравнение:
15+x=70
x=70-15=55°
=> <XAB=55°
S (Δ ADC)=DC·H/2
S( Δ ABD)= BD·H/2
S (Δ ADC) : S( Δ ABD)= DC:BD=5:4 ⇒ S ( Δ ABD) = 60·4/5=48
S(Δ ABC)= S(ΔADC) + S(ΔABD)=60+48=108