Ромб ABCD перегнули по его большей диагональю BD так, что плоскости ABD и CBD оказались перпендикулярными, а расстояние между точками A и C стала равна 4√2 см. Найдите длину сторона ромба, если тупой угол ромба равен 120°
Объяснение:
Пусть точка пересечения диагоналей О. По свойству диагоналей ромба АО=ОС и ∠ВСО=∠DСО=120°:2=60°
1)Т.к. плоскости ABD и CBD оказались перпендикулярными , то ∠АОС=90°
ΔАОС-прямоугольный , равнобедренный , АО=ОС=х ,АС=4√2 см.
По т. Пифагора х²+х²=(4√2)² , 2х²=16*2 ,х=4 , АО=ОС=4 см.
2) ΔВОС -прямоугольный (диагонали ромба взаимно-перпендикулярны). ∠ОВС=90°-60°=30°. По свойству угла в 30° , ВС=8см. Сторона ромба 8 см.
По теорем косинусов а*a=b*b+c*c-2bc*cos(A)
Есть два уравнения и два неизвестных.
Перепишем теорему косинусов так
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
ПОПРОБУЕМ:
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
(b+c)=x
bc=(xr+ar)/sinA
a*a=x*x-2*(xr+ar)*(cosA+1)/sinA
a*a=x*x-2(x+a)r*ctg(A/2)
x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2
(x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2
(x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2
x=a+2r*ctg(A/2)
(b+c)= a+2r*ctg(A/2)
(вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить)
(b-c)^2= b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA
(b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))
b= (a+2r*ctg(A/2) )/2+ sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
c=(a+2r*ctg(A/2) )/2- sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть
Получили бы еще и симметричное решение. b и c равноправны и их можно поменять местами.
Извините , за некрасивый ответ. Надеюсь, правильный.