Tg a = 1/ ctg a 1 + ctg²a = 1 + cos²a / sin²a = (sin² a + cos² a) / sin² a = 1/sin² a Известно, что тангенс угла ромба tg a = 8√17/17 => ctg a = 17/8/√17 = √17/8 1 + ctg²a = 1 + 17/64 = (64+17) / 64 = 81/64 1/sin²a = 81/64 sin² a = 64/81 sin a = 8/9 Площадь ромба S = a² * sin α, где а - сторона ромба, α - любой угол Периметр ромба P = 4*a = 72 по условию. а = 72/4 = 18 Получим S = a*a*sin α = 18*18*8/9 = 288
72:4=18 см сторона ромба S=a²*sin ∠A Найдем sin a 1+ctg²A=1/sin² A. ctg A=1/tg a= 17/8√17=√17/8 1+(√17/8)²=1/sin²A 1+17/64=1/sin²A 81/64=1/sin²A sin² A=64/81 sin A=8/9 s=18²*8/9=18*2*8=288 cv² P s. sinA=-8/9 не рассматриваем ∠А меньше 180 градусов
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. 1. Пусть АМ = х, тогда СМ = 3 - х. (3 - x) : x = 3 : 2 6 - 2x = 3x 5x = 6 x = 1,2 AM = 1,2 см, СМ = 1,8 см
2. Так как MN < NK, то MP < PK. Пусть МР = х, тогда РК = х + 0,5 4 : x = 5 : (x + 0,5) 5x = 4x + 2 x = 2 МР =2 см, РК = 2,5 см
3. DE + EP = Pdep - DP = 21 - 7 = 14 см Пусть DE = x, тогда ЕР = 14 - х x : 3 = (14 - x) : 4 4x = 42 - 3x 7x = 42 x = 6 DE = 6 см, ЕР = 8 см
4. Пусть АВ = х, тогда ВС = х + 3. x : 2 = (x + 3) : 3 3x = 2x + 6 x = 6 АВ = 6 см, ВС = 9 см
6. В условии опечатка: надо найти длины сторон CD и DE. DF - диагональ ромба, а диагонали ромба лежат на биссектрисах его углов, значит DF - биссектриса треугольника. CD + DE = Pcde - CE = 55 - 20 = 35 см Пусть CD = х, тогда DE = 35 - х x : 8 = (35 - x) : 12 12x = 280 - 8x 20x = 280 x = 14 CD = 14 см, DE = 21 см
7. ΔАВС, ∠С = 90°, АМ - биссектриса. Пусть АС = х, тогда по теореме Пифагора АВ = √(х² + 81). x : 4 = √(х² + 81) : 5 5x = 4√(х² + 81) 25x² = 16x² + 81 · 16 9x² = 81 · 16 x² = 9 · 16 x = 3 · 4 = 12 АС = 12 см Sabc = AC · CB / 2 = 12 · 9 = 54 см²
8. Так как точка О равноудалена от катетов, СО - диагональ квадрата, а диагонали квадрата лежат на биссектрисах его углов. Значит СО - биссектриса треугольника. а : 40 = b : 30 b = 30a / 40 = 3a/4 По теореме Пифагора: 70² = a² + 9a²/16 25a²/16 = 4900 a² = 4900 · 16 / 25 = 196 · 16 a = 14 · 4 = 56 CB = 56 см АС = 3 · 56 / 4 = 3 · 14 = 42 см Sabc = CB · AC / 2 = 56 · 42 / 2 = 1176 см²
1 В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d, уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°. 2 В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD () , как катет лежащий против угла 30 в треугольнике CHD. , как катет лежащий против угла 30 в треугольнике BMC. 3 В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом Тогда в ромбе 4 треугольник AMD равносторонний, , тогда Треугольник BAM равнобедренный, АВ=АМ, тогда 5 , треугольник MCD равнобедренный, MD=CD=3, , , как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4. Тогда ВС=AD=7, АВ=CD=3, периметр .
1 + ctg²a = 1 + cos²a / sin²a = (sin² a + cos² a) / sin² a = 1/sin² a
Известно, что тангенс угла ромба tg a = 8√17/17 => ctg a = 17/8/√17 = √17/8
1 + ctg²a = 1 + 17/64 = (64+17) / 64 = 81/64
1/sin²a = 81/64
sin² a = 64/81
sin a = 8/9
Площадь ромба S = a² * sin α, где а - сторона ромба, α - любой угол
Периметр ромба P = 4*a = 72 по условию.
а = 72/4 = 18
Получим S = a*a*sin α = 18*18*8/9 = 288