K и M - середины AB и BC соответственно, значит AK = KB и CM = MB. Но у нас дан равнобедренный треугольник, значит у него боковые стороны равны, из этого следует, что AK = KB = CM = MB Рассмотрим ΔADK и ΔCDM A = C (так как углы при основании р/б Δ-ка равны) AK = CM (см пункт 1) AD = DC (так как BD - медиана ΔABC) ΔADK = ΔCDM (по 2 сторонам и углу между ними) Рассмотрим ΔBKD и ΔBMD BD - общая сторона KB = BM (см пункт 1) KD = DM (из равенства ΔADK и ΔCDM ΔBKD = ΔBMD (по 3 сторонам) Вроде бы все, но это можно решить проще (без доказательств равенства ADK и CDM): BD - общая сторона KD = BM (пункт 1) угол KBD = MBD (по свойству медианы р/б Δ-ка) ΔBKD = ΔBMD (по 2 сторонам и углу между ними) Рисунок во вложении
Сумма двух соседних сторон треугольника равна половине периметра, то есть, 62/2=31. Обозначим соседние стороны треугольника за x и 31-x. Рассмотрим прямоугольный треугольник, состоящий из двух соседних сторон прямоугольника и его диагонали. По теореме Пифагора, x²+(31-x)²=25², 2x²-62x+961=625, 2x²-62x+336=0, x²-31x+168=0. Решим это квадратное уравнение: D=31²-168*4=289, x1=(31-17)/2=7, x2=(31+17)/2=24. Значит, стороны прямоугольника равны 7 и 24 (во втором случае 24 и 7, что одно и то же). Площадь прямоугольника равна произведению сторон, то есть, 7*24=168.
22-х-2 сторона
5х=6(22-х)
5х=132-6х
5х+6х=132
11х=132
х=132:11
х=12-1 сторона
22-12=10-2 сторона