М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Solomina2
Solomina2
20.03.2023 08:51 •  Геометрия

Дан куб abcda1b1c1d1. 1) постройте отрезок, являющийся пересечением грани abb1a1 и плоскости альфа, в которой лежат прямая cc1 и точка k - середина ab. 2) постройте сечение куба плоскостью альфа. 3) вычислите периметр построенного сечения, если ребро куба равно 20 см.

👇
Ответ:
Stupidpeoplenamber1
Stupidpeoplenamber1
20.03.2023
1) СС₁║ВВ₁ как противоположные стороны квадрата, ⇒ СС₁║(АВВ₁),
плоскость α проходит через прямую СС₁ параллельную плоскости  боковой грани и пересекает эту плоскость, значит линия пересечения параллельна СС₁.
Проведем КЕ║ВВ₁, а так как СС₁║ВВ₁, то и КЕ║ СС₁.
α∩(АВВ₁) = КЕ.

2) Точки С и К лежат в плоскости одной грани, соединяем их, точки С₁ и Е соединяем, так как они лежат в плоскости одной грани.
КЕС₁С - искомое сечение.

3)  КЕ║ВВ₁, КВ║ЕВ₁, ∠ВВ₁К = 90°, ⇒
КЕВ₁В - прямоугольник,  значит ЕВ₁ = КВ = АВ/2 = 20/2 = 10 см.
КЕ = ВВ₁ = СС₁ = 20.
ΔКВС = ΔЕВ₁С₁ по двум катетам, значит КС = ЕС₁.

ΔКСВ: по теореме Пифагора
             КС = √(КВ² + ВС²) = √(100 + 400) = √500 = 10√5 см
Pkecc₁ = (CC₁ + KC)·2 = (20 + 10√5)·2 = 20(√5 + 2) см
 

Дан куб abcda1b1c1d1. 1) постройте отрезок, являющийся пересечением грани abb1a1 и плоскости альфа,
4,4(91 оценок)
Открыть все ответы
Ответ:
Асат11
Асат11
20.03.2023
1) В прямоугольнике все углы прямые.
   Пусть один острый угол pk°, второй qk°.
pk+qk=90
k=90/(p+q)
Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов.
Стороны прямоугольника
d·cos(90p/(p+q) )  и    d·cos(90q/(p+q) )

Р=2·(d·cos(90p/(p+q) )  +    d·cos(90q/(p+q) ))

2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О.
    Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD  равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)

Средняя линия трапеции равна полусумме оснований.

MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =

=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))
4,4(40 оценок)
Ответ:
Sveta1314
Sveta1314
20.03.2023
1) В прямоугольнике все углы прямые.
   Пусть один острый угол pk°, второй qk°.
pk+qk=90
k=90/(p+q)
Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов.
Стороны прямоугольника
d·cos(90p/(p+q) )  и    d·cos(90q/(p+q) )

Р=2·(d·cos(90p/(p+q) )  +    d·cos(90q/(p+q) ))

2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О.
    Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD  равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)

Средняя линия трапеции равна полусумме оснований.

MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =

=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))
4,4(68 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ