М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vols1
vols1
27.01.2020 02:27 •  Геометрия

Втреугольнике авс ав=вс =ас =78корней из 3 найти высоту сн

👇
Ответ:
Forkier
Forkier
27.01.2020

надо найти сторону BH=BA/2=78V3/2=39V3

теперь по теореме Пифагора, находим сторону CH=все из под корня 78V3 в квадрате - 39V3 в квадрате=все из под корня 18252-4563= из под корня 13689 и равняется 117см

4,5(40 оценок)
Открыть все ответы
Ответ:
mamarika2001
mamarika2001
27.01.2020
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.

Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 
4,7(87 оценок)
Ответ:
mihailova1999
mihailova1999
27.01.2020

7.(2б)

Найти угол между стороной AB и медианой BB₁ треугольника ABC :

A(3; 5; 0) , B(0 ; - 6; 0)  , C(3 ;1 ;0) .     AB₁=CB₁ = AC/2  =  2

∠ABB₁  -?

- - - - - - - - - - --

B₁ (3 ; 3; 0) _середина стороны AC    * * * (3+3) /2 ; (5+1)/2 ; (0+0)/2 * * *

BA { 3 ; 11 ; 0 }              * * * 3 -0 ; 5 -(-6) ; 0 -0 * * *

BB₁ { 3 ;  9 ; 0 }              * * * 3 -0 ; 3 -(-6) ; 0 -0  * * *

cos(∠(BA, BB₁) )  = BA*BB₁ / |BA|*|BB₁|  =

(3*3+11*9 +0*0)/√(3²+11²+0²)*√(3²+9²+0²) =108/√130*√90 =

108/ 30 √13 =3,6 / √13 .            

* * *  !  3,6 /√13 =(√3,6²) /√13 =√12,96 /√13  < 1   * * *  

     ∠(BA, BB₁) =arccos(3,6 /√13  )    

BA*BB₁ - скалярное произведение векторов  BA и BB₁

|BA| и |BB₁|  -  модули  векторов  BA и BB₁

- - - - - - - -

8.(2б)

B(2 ; - 1; - 1)  , A(2 ; 2 ; - 4) , C(3 ; - 1 ; -2) ,

BA { 0 ; 3 ; -3}  ;  BC { 1 ; 0 ; - 1}

cos(∠(BA, BC) )  = BA*BB / |BA|*|BC|  

BA*BC - скалярное произведение векторов  BA и BC

|BA| и |BC|  -  модули  векторов  BA и BC

* * * ∠(BA, BC) =  ∠B * * *

cos∠B = cos(∠(BA, BC) )= (0*1+3*0 + (-3)*(-1) )/√(0²+3²+(-3)² )*√(1²+0²+(-1)²) =

3/√18*√2  = 3/6 =1/2   ⇒    ∠B =60 °

Внешний  угол при вершине B будет  180° - ∠B = 180° - 60 ° = 120°

- - - - - - - -

9.(2б)  Центр сферы A(4 ; -4 ; 2) ,  O(0 ; 0 ;0) ∈ поверхности сферы

* * *(x - x₀)²+(y - y₀)²+ (z - z₀)² = R²  уравнение сферы радиусом R , центр которой в точке  A( x₀; y₀ ; z₀)  * * *

(x - 4)²+(y +4)²+ (z -2)² = R²    Нужно найти  R

Т.к. O(0 ; 0 ;0)  ∈ поверхности сферы ,то

(0 - 4)²+(0 +4)²+ (0 -2)² = R² ⇔  R² =36      

следовательно

(x - 4)²+(y +4)²+ (z -2)² =  36                * * * R² =6² * * *


решите одну из этих задач , если получится , и остальные . Заранее благодарю.
решите одну из этих задач , если получится , и остальные . Заранее благодарю.
4,4(32 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ