Вцилиндре проведено сечение,параллельное его оси.диагональ сечения равна 16 и составляет угол в 60 градусов с плоскостью основания.радиус основания равен 5.найдите расстояние от оси цилиндра до плоскости сечения
АА1В1В-сечение (прямоугольник). Сторона сечения АВ является хордой нижнего основания, А1В1-верхнего. Диагональ АВ1=16. Треуг. АВ1В-прямоугольный, угол А=60, значит В1=30, тогда АВ=АВ1/2=16/2=8. Из центра О нижнего основания проведем радиус в точку хорды А и перпендикуляр к хорде ОН. Перпендикуляр, проведенный из центра окружности к хорде, делит ее пополам. Получили прямоугольный треугольник ОНВ, где сторона ОН-расстояние от оси цилиндра до плоскости сечения.
Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см
Решение: Радиус окружности описанной вокруг равностороннего треугольника находится по формуле: R=√3/3 - где а-сторона треугольника Высота в таком треугольнике можно найти по формуле: h=√3/a*a - где а -сторона треугольника По этой формуле найдём сторону равностороннего треугольника: а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см) Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности: R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
АА1В1В-сечение (прямоугольник). Сторона сечения АВ является хордой нижнего основания, А1В1-верхнего. Диагональ АВ1=16. Треуг. АВ1В-прямоугольный, угол А=60, значит В1=30, тогда АВ=АВ1/2=16/2=8. Из центра О нижнего основания проведем радиус в точку хорды А и перпендикуляр к хорде ОН. Перпендикуляр, проведенный из центра окружности к хорде, делит ее пополам. Получили прямоугольный треугольник ОНВ, где сторона ОН-расстояние от оси цилиндра до плоскости сечения.
В треуг ОНВ ОВ=5, НВ=АВ/2=8/2=4
ОН=√(25-16)=3
ответ: 3