Угол правильного n-угольник можно найти по формуле a=(n-2)*180/n, где n - количество сторон фигуры. Подставим числовые значения в нашу формулу: a=(20-2)*180/20=18*18*10/20=18*18/2=9*2*18/2=9*18=162 градуса. ответ: 162 градуса.
В выпуклом n-угольнике всего n(n-3)/2 диагонали, так как можно выбрать одну из вершин и выбрать другую вершину, не смежную с уже выбранной. Каждая диагональ будет посчитана 2 раза, поэтому нужно разделить результат на 2. Таким образом, нужно решить уравнение n(n-3)/2=77 или n(n-3)=154. Можно просто подобрать n или решить квадратное уравнение n²-3n-154=0 : n²-3n-154=0 D=9+154*4=9+616=625 n₁=(3+25)/2=14 n₂=(3-25)/2=-11 - посторонний корень, число сторон положительно.
Таким образом, n=14, то есть в многоугольнике 14 сторон. В выпуклом n-угольнике сумма углов равна 180(n-2), тогда сумма углов выпуклого 14-угольника будет равна 180(14-2)=180*12=2160 градусам.
Ага Итак, NK=BK=. Значит, DK=2NK=2. Считаем площадь равнобедренного ADC==6. Получаем, наконец, площадь полной поверхности: 3+3*6=21 (площадь основания плюс площади трех боковых граней). Переходим к объему. Объем пирамиды равен одной трети произведения площади основания на высоту. В нашем случае это площадь ABC, а высота - DN. Найдем DN по теореме Пифагора из знакомого нам DNK. DN=. И наконец, V=9 Уффф. Извини, что так долго ждать заставил - замучился формулы писать. Перепроверь подсчеты, а в остальном - как-то так.
a=(20-2)*180/20=18*18*10/20=18*18/2=9*2*18/2=9*18=162 градуса.
ответ: 162 градуса.