М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
soz2019oy63um
soz2019oy63um
28.08.2021 00:59 •  Геометрия

Отрезок dm – биссектриса треугольника cde. через точку м проведена прямая, пересекающая сторону de в точке n так, что dn = mn. найдите углы треугольника dmn, если cde = 74°. 2. на рисунке ab || dc, ab = dc. докажите, что точка о – середина отрезков ас и bd.

👇
Ответ:
Jeka990
Jeka990
28.08.2021
1.
рассмотрим ΔDМN - равнобедренный т.к. DN=MN
⇒ ∠MDN=∠DMN
∠D=74°
т.к. DМ - биссектриса  ⇒
∠CDM=∠MDЕ=74/2=37°   ⇒
∠MDN=∠DMN=37°
∠DNM=180-37-37=106°

2.
(рис.2)
т.к. АВ=ДС и АВ||ДС   ⇒
АВСД = параллелограмм  (по признаку)
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
⇒ по свойству параллелограмма
Диагонали параллелограмма пересекаются и точкой пересечения делят друг друга пополам
О - середина отрезков АС и ВД
Отрезок dm – биссектриса треугольника cde. через точку м проведена прямая, пересекающая сторону de в
Отрезок dm – биссектриса треугольника cde. через точку м проведена прямая, пересекающая сторону de в
4,6(37 оценок)
Открыть все ответы
Ответ:
lopas12341234
lopas12341234
28.08.2021
Треугольники АВF и АСF равны (это прямоугольные треугольники, у которых равны
гипотенузы АВ и АС (как касательные из одной точки к окружности) и общий катет АF. Значит Sabf=Sacf. Если Sdecf = Sabd, то Sfbd= Seda. Тогда Scbe=Sabe (из равных площадей вычитаем равные площади, значит оставшиеся площади равны).
В треугольнике АВС отрезок ВЕ, проведенный из вершины угла В к противоположной стороне, делит площадь этого треугольника пополам, так как Sabe и Sbec состоят из равновеликих частей (Sabd+Sade)=(Sbdf+Sdecf).
Следовательно, ВЕ - медиана треугольника АВС.
Рассмотрим <CВD и <АВЕ. Эти углы равны, так как <CВD вписанный, опирающийся на
дугу СD, а <ABD (<ABE) - угол, образованный касательной к окружности и секущей,
равен половине дуги ВD. Но дуги CD и BD равны (так как равны центральные углы ВОD
и СОD, опирающиеся на эти дуги), значит  <CВЕ и <АВЕ равны.
Следовательно, ВЕ - биссектриса угла СВА.
Но если в треугольнике АВС биссектриса и медиана совпадают, значит этот треугольник равнобедренный и стороны СВ и ВА равны.
Но мы знаем, что ВА=АС, как касательные к окружности, проведенные из одной точки. Значит треугольник АВС равносторонний и <ВСА = 60°.
<OCA = 90° (радиус к касательной в точку касания), тогда
<OCB = <OCA-<BCA=90°-60° = 30°.
ответ: угол ОСВ = 30°

Из точки a, находящейся вне окружности с центром o, проведены две касательные ab и ac (b и c — точки
4,4(44 оценок)
Ответ:
Boom111111111111
Boom111111111111
28.08.2021
б
Площа квдарата вимірюється за формолю S=a², де а сторона квадрата. Нехай сторона більшого квадрата дорівнює 3a, тоді меншого дорівнює 2a.
Площа меншого квадрата дорівнює 8см², отже
2a*2a=8
4a²=8
a²=2
a=√2
Сторона більшого квадрата дорівнює 3a=3*√2=3√2, отже S= 3√2*3√2=9*2=18см²

б
Квадрати між собою зажди подібні, тому  відношення площ дорівнбє відношенню сторін піднесених до другої степені. Нехай S₁-площа більшого квадарата, а S₂=8-площа меншого квадрата, 3x-сторона більшого квадрату, 2х-сторона меншого квадрату.
\frac{S_{1}}{8} =( \frac{3x}{2x})^{2} \\ \frac{S_{1}}{8} = \frac{9}{4} \\ S_{1}= \frac{9*8}{4} = \frac{72}{4} =18(cm^{2})

Відповідь: S=18cm²
4,4(63 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ