Формула нахождения высоты равностороннего треугольника: h=(√3/2)*a где а = сторона треугольника. Отсюда выводим формулу стороны треугольника: a=h/(√3/2) a=2/(1.732/2) a=2.309 округляем a до 2.31 Т.к. треугольник равносторонний, то каждая его сторона будет равна 2.31 сантиметра.
В прямоугольном треугольнике гипотенуза BC равна 20, катет AB равен 16. Найдите квадрат расстояния от вершины A до биссектрисы угла C.
Расстояние от точки до прямой измеряется перпендикуляром, проведенным от этой точки до прямой. Сделаем рисунок. Пусть биссектриса угла С будет СК. Биссектриса треугольника (любого) делит противоположную сторону в отношении длин прилежащих сторон. ⇒ АК:КВ=АС:ВС=12:20=3/5 ⇒АК=АВ:(3+5)*3 АК=6 Рассмотрим ⊿КАС КС - гипотенуза КС=√(АК²+АС²)=√180=6√5 АН можно найти из ⊿АНК. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом высотой АК²=КН*КС 36=КН*6√5 КН=36:6√5=6:√5 АН²=АК²-КН² АН²=36-(36:5)=144/5=28,8 ответ: квадрат расстояния от вершины A до биссектрисы угла C равен 28,8
В прямоугольном треугольнике гипотенуза BC равна 20, катет AB равен 16. Найдите квадрат расстояния от вершины A до биссектрисы угла C.
Расстояние от точки до прямой измеряется перпендикуляром, проведенным от этой точки до прямой. Сделаем рисунок. Пусть биссектриса угла С будет СК. Биссектриса треугольника (любого) делит противоположную сторону в отношении длин прилежащих сторон. ⇒ АК:КВ=АС:ВС=12:20=3/5 ⇒АК=АВ:(3+5)*3 АК=6 Рассмотрим ⊿КАС КС - гипотенуза КС=√(АК²+АС²)=√180=6√5 АН можно найти из ⊿АНК. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом высотой АК²=КН*КС 36=КН*6√5 КН=36:6√5=6:√5 АН²=АК²-КН² АН²=36-(36:5)=144/5=28,8 ответ: квадрат расстояния от вершины A до биссектрисы угла C равен 28,8
h=(√3/2)*a
где а = сторона треугольника.
Отсюда выводим формулу стороны треугольника:
a=h/(√3/2)
a=2/(1.732/2)
a=2.309
округляем a до 2.31
Т.к. треугольник равносторонний, то каждая его сторона будет равна 2.31 сантиметра.