1) В параллелограмме угол A = углу C , угол B = углу D = 60 Если продолжить сторону AB вниз , ниже точки А, и запишем ее конец как К то мы получим угол, который вертикальный углу В и значит равен ему. B C \60 \ \ \ A\60\D \60 K \ Известен угол CAB = 40 Угол BAD и угол DAK - смежные углы. Сумма смежных углов равна 180 ACD = 180 - угол BAC - угол DAK = 180 - 40 - 60 = 80 ответ: 80.
#1. l-длина дуги, S- площадь сектора,- градусная мера сектора, R- радиус окружности l= Подставим известное и получим
Выразим R и получим
Подставим известное
Отсюда
ответ : 6 см, 60°. #2. Дано: d впис= 10 см, a(сторона многоугольника) = 10√3 Найти: n(кол-во сторон), R опис Решение: r(радиус впис окр)=0.5d=5см Выразим радиус описанной окружности через сторону и через радиус вписанной окружности, а затем приравняем
Сокращаем на 10 и получаем
Тангенс, равный √3 имеет угол в 60°, а значит, , откуда n=3 Так как многоугольник- треугольник, то радиус вписанной окружности равен половине радиуса описанной., значит, R=2r=10см ответ: 3 стороны, 10 см.
#1. l-длина дуги, S- площадь сектора,- градусная мера сектора, R- радиус окружности l= Подставим известное и получим
Выразим R и получим
Подставим известное
Отсюда
ответ : 6 см, 60°. #2. Дано: d впис= 10 см, a(сторона многоугольника) = 10√3 Найти: n(кол-во сторон), R опис Решение: r(радиус впис окр)=0.5d=5см Выразим радиус описанной окружности через сторону и через радиус вписанной окружности, а затем приравняем
Сокращаем на 10 и получаем
Тангенс, равный √3 имеет угол в 60°, а значит, , откуда n=3 Так как многоугольник- треугольник, то радиус вписанной окружности равен половине радиуса описанной., значит, R=2r=10см ответ: 3 стороны, 10 см.
Если продолжить сторону AB вниз , ниже точки А, и запишем ее конец как К то мы получим угол, который вертикальный углу В и значит равен ему.
B C
\60 \
\ \
A\60\D
\60
K \
Известен угол CAB = 40
Угол BAD и угол DAK - смежные углы. Сумма смежных углов равна 180
ACD = 180 - угол BAC - угол DAK = 180 - 40 - 60 = 80
ответ: 80.