1. Проводите на бумаге прямую "а". 2. Откладываете на этой прямой отрезок АВ (замерив данный Вам катет циркулем), равный данному катету. 3. От точки А на этой же прямой откладываете отрезок АА1, равный данному катету, но в противоположную сторону. 4. Из точек А и В циркулем проводите дуги радиусом, БОЛЬШИМ АА1 и получаете точку пересечения этих дуг М. 5. Соединяете точки А и М прямой - это будет перпендикуляр к прямой в точку А, то есть перпендикуляр, содержащий второй катет. 6. Теперь от точки В строите данный Вам острый угол. Для этого на данном нам угле радиусом R проводим окружность и получаем точки Р и К. Этим же радиусом проводим окружность с центром в точке В на прямой "а". Получаем точку Р1. Замеряем циркулем расстояние РК на данном нам угле. Это радиус r. Из точки Р1 (как центр) на прямой "а" радиусом r проводим окружность и в точке пересечения двух окружностей получаем точку К1. Через точки В и К1 проводим прямую "b". Получили данный нам угол В. 7. Пересечение прямой b с перпендикуляром и даст Вам третью точку С искомого треугольника. Получили искомый треугольник АВС.
Пирамида правильная, следовательно, в основании лежит правильный треугольник. Площадь полной поверхности - площадь основания+площадь боковой поверхности. Площадь основания S(o) вычислим по формуле: S=(а²√3):4 S(о)=(9√3):4 Площадь боковой поверхности Sб - по формуле Sб=Р*(апофема):2 Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/ Апофему МН найдем из прямоугольного треугольника МОН. Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2 МО=ОН. ОН=r=(3√3):6=(√3):2 МН=(√3):2)*√2=(√3*√2):2 Р=3*3=9 Sб=9*(√3*√2):2):2=9*(√3*√2):4 см² Sполн=(9√3):4+(9*√3*√2):4 Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см² ---- bzs*
9)
∠BAD=∠EBA=25° (как внутренние накрест лежащие углы при AD//BE и секущей AB).
∠ACD=180°-∠BAD-∠CDA=180°-25°-43°=112°
∠DCB=180°-∠ACD=180°-112°=68°
ответ: ∠DCB=68°.
10)
∠ADE+∠ADC=180° (т.к. смежные)
∠ADC=180°-∠ADE=180°-130°=50°
∠ADC+∠BAD=180° (как внутренние односторонние углы при CE//BA и секущей AD)
∠BAC=∠CAD=(180°-∠ADC)/2=(180°-50°)/2=65°
∠ACD=180°-∠CAD-∠ADC=180°-65°-50°=65°
ответ: ∠ACD=65°.
11)
∠TFR=∠FRP=30° (как внутренние накрест лежащие углы при TF//RP и секущей FR).
ΔRFP-равнобедренный ⇒ ∠FRP=∠RPF=30°.
∠SFT=180°-∠TFR-∠RFP=180°-30°-(180°-∠FRP-∠RPF)=
=180°-30°-(180°-30°-30°)=
=180°-30°-120°=30°
ответ: ∠RPF=30°; ∠SFT=30°.
12)
ΔMEN-равнобедренный ⇒ ∠EMN=∠ENM=37°
∠ENM=∠KNE=37°
ΔEFN-равнобедренный ⇒ ∠FNE=∠FEN=37°
∠NFE=180°-∠FNE-∠FEN=180°-37°-37°=106°
∠KFE=180°-∠NFE=180°-106°=74°
ответ: ∠KFE=74°.