Угол АОС - центральный и равен 90° (дано), значит дуга АС, на которую он опирается, равна 90°. Угол АВС - вписанный и опирается на дугу АС=90°. Градусная мера вписанного угла равна половине градусной мере дуги, на которую он опирается, то есть 45°. Но угол АВС равен сумме углов ОВА и ОВС=15°, значит угол ОВА = 45°-15°=30°.
В прямоугольном треугольнике ОВК (точка К - это основание серединного перпендикуляра к прямой АВ, т.е. расстояние от О до АВ =6см это дано) против угла в 30° лежит катет, равный половине гипотенузы ОВ, являющейся радиусом описанной окружности. Значит ОВ=12см.
Итак, искомый угол ОВА = 30°, а R = 12cм.
( рисунок во вложении)
Продолжим прямые АВ и СД, пункт пересечения обозначим М. Треугольник МВС подобен треугольнику МАД по трем углам ( угол МВС = углу ВАД, угол МСВ = углу СДА (прямые ВС и АД параллельные так, как АВСД - трапеция, а эти две пары углов соответственные) и угол АМД - общий)
Коэффициент подобия треугольников к = АД/ВС = 24/6=4, значит МД:МС=4:1, а раз по условию СК:КД=1:2, то МС = СК и пункт К является серединой отрезка МД.
Если АК - биссектриса ( по условию) и медиана( К является серединой отрезка МД), то треугольник АМД - равнобедреный( у равнобедреного треугольника медиана является биссекрисой) и АМ = АД = 24 см ( боковые стороны)
АМ:ВМ = 4:1(коэффициент подобия треугольников к =4), а раз АМ = 24, то ВМ =АМ/4=6см
АВ = АМ - ВМ = 24 - 6 = 18 см
ответ: АВ = 18 см
с=3*8π=24π см.