На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
ответ:
контрольная 2:
1) рассмотрим треугольники aod и сов:
ао=ов
со=od
угол aod = угол сов, т к они вертикальные
трегольник аоd = трегольник сов по 1 признаку
2)т.к треугольник авс - равнобедренный, то ак - биссектриса и медиана => ск = кв = сd/2 = 12
рассмотрим треугольник акв:
ак = 16
кв = 12
ав = 20
р = ак + кв + ав = 16 + 12 + 20 = 48
3)т.к. угол м = угол n, то треугольник мкn - равнобедренный => мк=кn
p=mk+kn+mn=170
mk+kn=170-54
mk+kn=116
mk=kn=116: 2=58
4) ab=x
ac=x+10
bc=2x
x+x+10+2x=70
4x+10=70
4x=60
x=15
ac=15+10=25
bc=15*2=30
5)т.к. см и ак - медианы, то ам=ск => треугольники амс и акс равны по 1 признаку => углы амс и акс равны
Площадь прямоугольного треугольника равна половине произведения катетов и площадь равна половине произведения гипотенузы на высоту
3х·4х=h·5x
h=2,4x
По условию h=12 cм
2,4х=12
х=12:2,4
х=5
Тогда катеты 15 и 20
По теореме Пифагора
(15)²-(12)²=(9)²
и
(20)²-(12)²=(16)²
9 см и 16 см