Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Если две прямые параллельны третьей прямой, то они параллельны.
Дано: прямые a,b,c. a║c, b║c
1
Анализ: нужно доказать, прямые a и b лежат в одной плоскости и не пересекаются.
Доказательство. Отметим точку D на прямой a и обозначим буквой α плоскость, проходящую через прямую b и точку D. Если допустить, что прямая a пересекает плоскость α, то по предыдущей лемме прямая c также пересечет эту плоскость, а так как c║b, то прямая b пересечет плоскость α, но этого быть не может, потому что прямая b лежит в плоскости α. Значит, прямая a принадлежит плоскости α. Таким образом, прямые a и b лежат в одной плоскости.
остальные сорри не знаю(
Прямые a и b не пересекаются, так как если бы они пересекались, то у них была бы общая точка (точка пересечения) и они бы имели общую параллельную им прямую, чего быть не может.