какое из следующих утверждений неверно?
а) Если высота треугольника делит сторону, к которой она проведена ,на равные отрезки ,то этот треугольник-равнобедренный. ВЕРНО
б) Если медиана и биссектриса,проведенные из одной вершины,не совпадают,то этот треугольник не является равнобедренным. НЕВЕРНО
Медиана и биссектриса, проведенные к боковой стороне равнобедренного треугольника, не совпадают. Совпадают только проведенные к основанию.
в) Если треугольник равносторонний ,то длина любой его высоты равна длине любой его биссектрисы. ВЕРНО
г) Если два угла треугольника равны ,то биссектриса третьего угла делит противолежащую сторону треугольника на равные отрезки. ВЕРНО
ответ : неверное утверждение б)
∠СВД, заключенный между СВ и ВД, равен ∠АВД, заключенному между АВ и ВД
ВС×ВА=ВД*ВД; отсюда следует пропорция:
ВС:ВД=ВД:АВ.
Если две стороны одного треугольника пропорциональны соответственно двум сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны.
В подобных треугольниках против сходственных сторон лежат равные углы, ⇒ ∠ВАД=∠ВДС
Отношение сходственных сторон DC:AD=3:2, k=3/2
Отношение площадей подобных фигур равно квадрату коэффициента подобия:S ∆ CBD:S ∆ ABD=k²S ∆ CBD:S ∆ ABD=9/4