Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
Доброго времени суток!
Как я поняла, вопрос был поставлен таков : "Стороны равнобедренного треугольника пропорциональны числам 1, 1, √2. Докажите, что этот треугольник — прямоугольный".
если это не так, то сообщите об этом в комментариях.
▔ ▔ ▔
★☆★ Чертёж смотрите во вложении ★☆★
Дано:ΔАВС — равнобедренный (АВ = ВС).
АВ : ВС : АС = 1 : 1 : √2.
Доказать:ΔАВС — прямоугольный.
Доказательство:▸Теорема, обратная теореме Пифагора — если квадрат большей стороны треугольника равен сумме квадратов других сторон, то такой треугольник — прямоугольный◂
Итак, пусть АВ = ВС = х, тогда, по условию задачи, АС = х√2.
Составим уравнение и проверим его на верность —
Итак, мы выяснили, что сумма квадратов меньших сторон равна квадрату большей стороны. Поэтому, по обратной теореме Пифагора, равнобедренный ΔАВС — прямоугольный.
ответ:что требовалось доказать.
В треугольнике АОК ОК²=АО²-АК²=40²-24²=1024, ОК=32 см.
В тр-ке СОМ ОМ²=СО²-СМ²=40²-32²=576, ОМ=24 см.
Расстояние между хордами: КМ=ОК+ОМ=32+24=56 см.