Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
H=4√2·sin45°=4
Диаметр основания
D(основания)=Н=4
R=D/2=2
V=πR²H=π2²·4=16π
В ответе 16π:π=16
2.
V₁:V₂=πR²₁H₁:πR²₂H₂=3²·5:5²·3=3:5=0,6
3.
Диагональ осевого сечения делит прямоугольник на два равных прямоугольных треугольника с острыми углами в 30° и 60°.
Катет, против угла в 30°( высота цилиндра) равен половине гипотенузы 4/2=2
Диаметр основания по теореме Пифагора
D= √(4²-2²)=√12=2√3
Радиус основания R=D/2=√3
V=πR²H=π(√3)²·2=6π
В ответе 6π:π=6
4) S(бок. цилиндра)=2π·R·H
2π·R·H=2π
R·H=1
D=1 ⇒ 2R=1 ⇒ R=1/2
H=2
V=πR²H=π(1/4)·2=(1/2)π
В ответе (1/2)π:π=1/2=0,5