Меньший катет лежит против угла в 30°, /т.к. другой угол 60°, а сумма острых углов прямоуг. треугольника 90°/, пусть он равен х, тогда гипотенуза 2х. Тогда разность между гипотенузой и меньшим катетом 2х-х= 15, откуда меньший катет равен 15 см.
С давних времён людям и продолжают передавать опыт и знания речь. Изначально это была только устная речь. Люди передавали знания и опыт, так сказать, из уст в уста, из поколения в поколение. Именно этим путём до нашего времени сохранились сказки и другие фольклорные произведения, а также многие приметы и народные мысли, пословицы. Позже, когда появилась письменность, люди стали передавать знания и опыт в книгах: до сих пор мы пользуемся толковыми словарями Даля и Ожигова, которые были написаны более столетия назад.
Примем, что диагонали ромба равны: ВD=12 и АС=16. Сторона основания (ромба) находится по Пифагору: АВ=√(АО²+ВО²)=√(6²+8²)=10. Площадь ромба равна: S=(1/2)*D*d=S=(1/2)*16*12=96. В треугольнике АВС АМ и ВО - медианы и по свойству медиан точкой пересечения делятся в отношении 2:1, считая от вершины. Значит ОР=ВО:3=6:3=2. Тогда РD=PO+OD=2+6=8. Площадь ромба равна и произведению высоты ромба на его сторону, то есть S=a*h, отсюда h=ВН=S/a=96/10=9,6. Прямоугольные треугольники НВD и KPD подобны и КР/ВН=PD/BD или КР/9,6=8/12, отсюда КР=8*9,6/12=6,4. В прямоугольном треугольнике SKP угол SKP=60°, значит <KSP=30° и КР=0,5КS. Тогда по Пифагору SP=√[(12,8)²-(6,4)²]=6,4√3. Объем пирамиды равен (1/3)So*h, где Sо - площадь основания, а h - высота пирамиды. Тогда V=(1/3)*96*6,4√3=204,8√3. ответ: V=204,8.
Меньший катет лежит против угла в 30°, /т.к. другой угол 60°, а сумма острых углов прямоуг. треугольника 90°/, пусть он равен х, тогда гипотенуза 2х. Тогда разность между гипотенузой и меньшим катетом 2х-х= 15, откуда меньший катет равен 15 см.
ответ 15 см