Вправильной треугольной призме авс а1в1с1 стороны оснований равны 8 а сечение ab1c образует с основанием угол равный 60.вычислить объем и поверхность призмы
Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
АВ₁С - сечение призмы плоскостью. В₁М_|_AC, BM_|_AC
<B₁MB=60° - линейный угол между плоскостью сечения плоскостью основания призмы
ΔАВ₁С - равнобедренный
ΔАВ₁С: АВ=8 см, ВМ - высота ΔАВС. ВМ=АВ√3/2. (h=a√3/2 - высота правильного треугольника)
ВМ=8√3/2, ВМ=4√3 см
прямоугольный ΔВВМ: tg<BMB=BB₁:BM. BB₁=BM*tg60°
BВ₁=4√3*(√3/3). BВ₁=4 см
V=Sосн*H
V=(a²√3/4)*H
V=8² *√3/4)*4. V=64√3 см³
Sполн.пов=Sбок.пов.+2*Sосн
Sб.п.=Pосн*H
Sп.п=3a*H+2*(a²√3/4)
Sп.п=3*8*4+2*16√3
Sп.п.=96+32√3 см²