М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
айдын23
айдын23
28.11.2021 19:21 •  Геометрия

Вромбе abcd со со стороной равны 12 и острым углом 60 градусов проведена высота bh найдите длину отрезка a h

👇
Открыть все ответы
Ответ:
lanv
lanv
28.11.2021

По признаку  параллельности прямых, если внутренние накрест лежащие углы  при прямых а и b и секущей с равны, то эти прямые параллельны. Значит, прямые а и b параллельны. Это раз.

Второе. Из условия параллельности прямых а и в вытекает равенство углов 3 и 5, которые тоже будут внутренними накрест лежащими уже при параллельных а и b и секущей с, и уже по свойству параллельных  прямых a и b и секущей с следует ∠3=∠5

2)∠2=∠6, ∠1=∠5; ∠4=∠8; ∠3=∠7- указаны пары соответственных углов при параллельных а и b  и секущей с. Поэтому по свойству соответственных углов данные углы равны.

3) ∠4+∠5=180°; ∠3+∠6=180°, это сумма внутренних односторонних при параллельных а и b  и секущей с. Сумма их равна 180° по свойству внутр. односторонних.

Подводим итог. Сначала доказали параллельность прямых а и b  при секущей с по признаку параллельности прямых, а затем для решения 1),2),3) воспользовались свойствами указанных углов при параллельных прямых а и b  и секущей с.

4,7(30 оценок)
Ответ:
sonyaunicorn1
sonyaunicorn1
28.11.2021

B2. Дан ΔABC, точка M — середина стороны AB, точка N — середина стороны BC, S_{AMNC} = 60. Найти S_{ABC}.

MN || AB, MN = \frac{1}{2}AB ⇒ ∠BMN = ∠BAC ⇒ ΔBMN подобный ΔBAC.

\frac{S_{BMN}}{S_{BAC}} =k^2\\\frac{S_{BMN}}{S_{BAC}} = \frac{MN}{AC} = (\frac{1}{2} )^2 = \frac{1}{4}

S_{AMNC}=S_{ABC}-S_{AMN} = 1-\frac{1}{4} =\frac{3}{4}\cdot S_{ABC}\\S_{ABC} = \frac{4}{3} \cdot S_{AMNC}\\ \\S_{ABC} =\frac{4}{3}\cdot 60 = 4\cdot 20 = 80

ответ: S_{ABC} = 80 ед. кв.

B3. AK — биссектриса ΔABC, АВ = 4, ВК = 2, КС = 3. Найти периметр ΔABC.

Биссектриса угла делит противоположную сторону на отрезки, пропорциональные прилегающим сторонам:

\frac{BK}{AB}=\frac{CK}{AC} \\\\\\frac{2}{4} = \frac{3}{AC} = AC = \frac{3\cdot 4}{2} =6

P = AB+AC+(BK+CK)

P = 4+6+(2+3) = 15

ответ: Периметр ΔАВС равен 15.

B4. Площадь прямоугольного ΔABC равна 360 см², АС:ВС = 3:4. Из середины гипотенузы восстановлен перпендикуляр КМ. Найти площадь ΔMKC.

BK = CK = \frac{1}{2}BC

∠ABC = ∠KMC ⇒ ΔCKM и ΔCAB подобны по двум углам и пропорциональной стороне.

k = \frac{KC}{AC}=\frac{2}{3}

\frac{S_{\triangle CKM}}{S_{\triangle CAB}}=k^2 = \left(\frac{2}{3} \right)^2 = \frac{4}{9} =\\\\S_{\triangle CKM}= \frac{4\cdot S_{\triangle CAB}}{9} = \frac{4\cdot 360}{9} = 4\cdot 40 = 160

ответ: S_{MKC} = 160 см².

4,6(89 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ