Если отрезки пересекающихся медиан равны, то и медианы равны.
Если медианы треугольника равны, значит, треугольник равносторонний.
Применив теорему о том, что медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, найдем длину медиан: ОА₁=√8, тогда АО=2√8, а АА₁=3√8. АА₁=ВВ₁=СС₁=3√8=6√2.
В равностороннем треугольнике медиана является биссектрисой и высотой. Найдем сторону АС через медиану ВВ₁ по формуле ВВ₁=(АС√3)\2 6√2=(АС√3)\2 АС√3=12√2 АС=(12√2)\√3=4√6
Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции. Пусть известны углы ∠BAD и ∠CDA, найдем углы ∠ABC и ∠BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.2В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC - y. Сумма углов любого треугольника равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° - 2x. В то же время из свойств трапеции: y + x + α = 180° и следовательно 180° - 2x + x + α = 180°. Таким образом, x = α. Мы нашли два угла трапеции: ∠BAC = 2x = 2α и ∠ABC = y = 180° - 2α.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° - 2α.
AB=14.