Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
А). Нехай один катет становыть х см, звідси інший - (х+5)см. За т. Піфагора: 625=х^2+x^2+10x+25 2x^2+10x-600=0 x^2+5x-300=0 x=15 (см.) - розмір одного катета. x=-20 не задовільняє задачу. 20 см. - розмір іншого катета. Звідси периметр становить 45+15=60 (см.)
б). х - коэфіціент пропорційності. За т. Піфагора: корінь із 9х^2+16х^2=корінь із 25х^2=5x - гіпотенуза трикутника. Звідси периметр становить: 7х+5x=60 12х=60 х=5 Отже гіпотенуза становить 5х=5*5=25.
Пусть АВС - исходный треугольник, С - вершина прямого угла, а АЕ и ВD - медианы.
Пусть ВС = а, АС = b. Тогда по теореме Пифагора
ВD² = BC² + CD² = a² + (b/2)² = a² + b²/4
AE² = AC² + CE² = b² + (a/2)² = b² + a²/4
Следовательно
BD² + CE² = a² + b²/4 + b² + a²/4 = 5/4 * (a² + b²) = 5/4 * AB²