Нужно рассмотреть варианты расположения точек на прямой с учетом длины указанных отрезков. 1 вариант: точка В лежит между точками А и С. Такой вариант возможен (см. рисунок) Т.к. AB=6, AC=10, BC=4 По рисунку: AC=AB+BC, 10=6+4 - верно.
2 вариант: точка С лежит между А и В. Такой вариант невозможен (см. рисунок) Т.к. AC>AB, а по рисунку получается AB=AC+BC
3 вариант: точка А лежит между С и В. Такой вариант тоже невозможен (см. рисунок) Т.к. BC<AC, BC<AB, а по рисунку BC=AC+AB
Соответственно, отвечая на поставленный вопрос: 1) "может ли точка С лежать между А и В" - нет (см. объяснение для 2-ого варианта рисунка) 2) "может ли точка В лежать между А и С" - да. 3) "какая из трех точек лежит между двумя другими" - точка В.
АВСД - трапеция. Основание ВС=28 см; основание АД=28+9=37 см.
Из точки С опустим ⊥ на АД, получим т.Н
АВСН - квадрат. все углы прямые и диагональ АС делит ∠А пополам.
h=АВ=28 см
S=(ВС+АД)/2 * h=(28+37)*28/2=910 cм².