№1.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.
идеально
Объяснение:
1
теорема косинусов
а)
вс^2=ab^2+ac^2 - 2*ab*ac*cosa=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
bc=√97 см
б)
ac^2=ab^2+bc^2 - 2*ab*bc*cosb=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
ас=√127 см
2
теорема косинусов
а)
cos120= - cos60
np^2=mn^2+mp^2 -2 mn*mp*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
np=√379 см
б)
np^2=
3
cos120= - cos60
а) меньшую диагональ (вd)
лежит напротив острого угла < 60
bd^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
bd=√52=2√13 см
б) большую диагональ (ас)
лежит напротив тупого угла < 120
ac^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
ac=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos< a
196=64+100 - 160*cos< a
32= - 160*cos< a
cos< a= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos< b
400=144+196-336* cos< b
60 =-336* cos< b
cos< b = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника < a=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sina=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол < с=180-< a-< b=180-30-40=110
по теореме синусов
ac/sin< b=bc/sin< a=ab/sin< c=2r
ac/sin40=bc/sin30=16/sin110
ac=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
bc= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
ab/sin< c=2r
r= ab/(2*sin< c)=16 / (2*sin110)=8/ sin110 = 8.5 см
7
8
углы параллелограмма а и в - односторонние
< a - напротив диагонали d1
< b=180-< a - напротив диагонали d2
cosa= - cosb=
d1^2=a^2+b^2-2ab*cosa
d2^2= a^2+b^2-2ab*cosb = a^2+b^2-2ab*(-cosa)= a^2+b^2+2ab*cosa
d1^2+d2^2 = a^2+b^2-2ab*cosa + a^2+b^2 +2ab*cosa = a^2+b^2 + a^2+b^2 = 2 *( a^2+b^2 )
доказано сумма квадратов диагоналей равна сумме квадратов (четырех)сторон
9
10
11
12
13
О - середина BD, так как диагонали прямоугольника делятся точкой пересечения пополам, значит
ВO = 1/2ВD.
ВР = 1/2 АВ по условию,
угол при вершине В - общий для треугольников ВРО и BAD,
значит ΔВРО подобен ΔBAD по двум пропорциональным сторонам и углу между ними.