Объяснение:Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
S_bok=1/2 Pa
Так как разность этих углов не равна нулю, значит эти углы не равны, следовательно они в сумме дают 180 градусов. Других углов, образованных при пересечении двух параллельных прямых секущей, не может быть. Эти углы - внутренние односторонние, найдем их градусные меры:
1) 180-42 = 138 град - удвоенный меньший угол
2) 138 : 2 = 69 град - меньший угол - один из внутренних односторонних углов
3) 69+42=111 град - больший угол - другой из внутренних односторонних углов
Остальные углы либо накрестлежащие с данными и они им равны, или соответственные с данными и они им тоже равны по свойству соответствующих углов.
Рассмотрим равнобедренный треугоьник АВС с основанием АС.ВH - высота. Треугольник АВH - прямоугольный, АH равняется половине АС, т.е. 12/2 = 6см., по теореме Пифагора найдем боковую сторону АВ2 = 8 в квадрате + 6 в квадрате = 100, тогда АВ = 10см. S = 1/2 АC*ВH = 1/2 *12*8 = 48 кв.см.
ответ: АВ = ВС = 10см, S = 48 кв.см.