Ну, первая проще некуда - умножаем 4*6 - это площадь одной боковой стороны, и еще умножаем на 4(стороны) Итого 4*6*4=96см^2
2. по апофеме и высоте вычисляем половину длины стороны основания пирамиды. Это по формуле (10^2-8^2) и все это под корнем. получается 6, еще умножаем на 2=12 (сторона основания)
далее вычисляем площадь по формуле: S=(1/2)PL+Sосн, где Р-периметр основания (12*4=48), L-апофема, Sосн-площадь основания (12*12=144). Итого (1/2)*48*10+144=384см^2
3 не знаю до конца, можно вычислить верхние и нижние диагонали по той же формуле, что и в пред. задаче, получается 8корней из 2 и 18корней из 2 соответственно. Если найдешь высоту усеченной пирамиды, можно будет узнать площадь сечения.
Для того что бы вычислить радиус круга необходимо знать его длину или площадь. Если нам известа одна из указаннх величин, для нас не составит труда вычислить радиус круга.
Радиус круга рассчитывается по следующим формулам:
Если нам известна длина:
Формула для расчета радиуса круга через его длину:
R=P/(2π)
Вычислить радиус круга через его длину
Если нам известна площадь:
Формула для расчета радиус круга через площадь:
R=√S/π
Вычислить радиус круга через площадь
Если нам известен диаметр:
Формула для расчета радиус круга через диаметр:
R=D/2
Вычислить радиус круга через диаметр
Где R - радиус круга, S – площадь круга, P – длина круга, D - диаметр, π – число Пи которое всегда примерно равно 3,14.
Объяснение:
И ещё.
Как вычислить площадь ( S ) круга, зная только его диаметр (D)
Например, диаметр круга = 10 сантиметров.
То радиус ( R ). естественно будет равен 5 см. ( половину диаметра )
Есть " пи " = 3,14 - это математическая постоянная, выражающая отношение окружности к длине её диаметра.
Есть формула определения площади круга ( S ):
S круга = пи х R в квадрате.
Подставляем данные в формулу:
S круга = 3,14 х ( 5 х 5 ) = 3,14 х 25 см = 78,5 квадратных см.
cos^2(a)=1-sin^2(a)=1-(1/4)^2=1-1/16=15/16
cosa=корень(15/16)
tga=sina/cosa=(1/4)/корень(15/16)=(1/4)/(1/4 * корень(15))=1/корень(15)