Радиус окружности, описанной около основания, равен √24 = 2√6.
Он равен проекции бокового ребра на основание и в то же время это половина диагонали квадрата в основании пирамиды.
Отсюда находим сторону а основания: а = 2*(2√6)/√2 = 4√3.
Так как угол наклона бокового ребра к плоскости основания равен 45 градусам, то находим его длину L.
L = 2√6/cos 45° = 2√6/(√2/2) = 4√3.
Теперь можно получить ответ - высота боковой грани пирамиды равна (это апофема А):
А = √(L² - (a/2)²) = √(4√3)² - (4√3/2)²) = √(48 - 12) = √36 = 6.
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Обозначим меньший из них через x. Тогда больший x+30
По определению, сумма односторонних=180. Имеем:
x+x+30=180 => x=75 и x+30=105