Трапецию с двумя вершинами по 90 градусов не вписать в правильный 16-и угольник. зато можно вписать четырёхугольника, у которого два противоположных угла по 90° Рассмотрим диагональ такого четырёхугольника, проведённую из вершины тупого угла в острый угол. Квадраты под запретом по условию. Эта диагональ является одновременно диаметром описанной окружности 16-и угольника и четырёхугольника, и гипотенузой двух прямоугольных треугольников, на которые диагональ делит четырёхугольник. Всего диагоналей возможно 16/2=8 С каждой стороны от диагонали возможны 7 точек расположения прямого угла. И всего четырёхугольников возможно 7*7*8=49*8=392
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см