Т.к. средняя линия всегда равна удвоенной стороне, напротив которой она расположена, то при взятии MN за 4х, NK за 2х, а MK за 3x, получится, что AB=4x, BC=6x, AC=8x. Тогда Pabc=4х+6х+8х=18х=45см, тогда х=45см/18=2,5см, значит AB=10см, BC=15см, AC=20см. ответ: стороны равны 10см, 15см и 20см.
Вариант решения 1. Площадь параллелограмма S=h*BC Sтрапеции=h*(ВЕ+АD):2 Высота параллелограмма и трапеции общая. ВЕ=ВС:2 АD=ВС=2 ВЕ ВЕ+АD=3ВЕ=3ВС:2 Sтрап=h*(3ВС:2):2 Sтрап=3 SABCD/4=3*92:4=69 Вариант решения 2 Соединим Е и D. Соединим В с серединой АD. Соединим В и D. Получились 4 равновеликих треугольника. Их высоты равны высоте параллелограмма, основания равны половине ВС и половине АD. АD=ВС. Площадь каждого треугольника равна 1/4 площади параллелограмма. Площадь трапеции АВЕD= 3/4 площади параллелограмма. S трапеции =92:4*3=69
Вариант решения 1. Площадь параллелограмма S=h*BC Sтрапеции=h*(ВЕ+АD):2 Высота параллелограмма и трапеции общая. ВЕ=ВС:2 АD=ВС=2 ВЕ ВЕ+АD=3ВЕ=3ВС:2 Sтрап=h*(3ВС:2):2 Sтрап=3 SABCD/4=3*92:4=69 Вариант решения 2 Соединим Е и D. Соединим В с серединой АD. Соединим В и D. Получились 4 равновеликих треугольника. Их высоты равны высоте параллелограмма, основания равны половине ВС и половине АD. АD=ВС. Площадь каждого треугольника равна 1/4 площади параллелограмма. Площадь трапеции АВЕD= 3/4 площади параллелограмма. S трапеции =92:4*3=69
ответ: стороны равны 10см, 15см и 20см.