а)
Удвоим медиану. Получим точку K. ( cм. рис.)
Четырехугольник КАВС – параллелограмм.
(Диагонали АС и ВК в точке пересечения делятся пополам.
АМ=МС по условию, что ВМ – медиана,
ВМ=МК по построению)
Значит, АК=ВС; КС=АВ.
Запишем неравенство треугольника
ВК ≤ KA+AB=BC+AB
BK ≤ KC+BC=AB+BC
Cкладываем
2BK ≤ 2AB+2BC
BK≤ AB+BC
2BM ≤ AB+BC
BM ≤ (AB+BC)/2
б)Δ АВК=Δ ВСК
( по трем сторонам)
В треугольнике АВК известны три стороны:
АВ=17
АК=9
ВК=10
По формуле Герона находим площадь Δ АВК
p=(17+10+9)/2=18
S=√18·1·9·8=36
S(параллелограмма КАВС)=2S(Δ АВК)=2·36=72
S( Δ ABC)=(1/2)S(параллелограмма КАВС)=36
О т в е т. 36

Объяснение:
7) Тр-к ABD - прямоугольный
ВD=AB*cos45 = 5
Тр-к BDC - прямоугольный
по т.Пифагора BC =√(BD^2 + CD^2) = √(25 + 11) = 6
8) Пусть BC - меньшее основание, AD - большее в трапеции ABCD. AC - диагональ.
BC||AD (по признаку трап.), <BCA=<CAD - накрест леж., По условию <BCA = <ACD
Следовательно <CAD= <ACD и образуют р/б тр-к ACD, отсюда CD=AD=17
Проведем высоты BH и CH1 к AD. BC=HH1=1 (прямоугольник). Т.к. трапеция р/бокая, то AH=DH1 = (AD - HH1)/2 = (17-1)/2=8
Тр-к ABH - прямоугольный. по т.Пифагора
BH = √(AB^2 - AH^2)=√(289 - 64) = 15
S = 1/2*(BC + AD)*BH = 1/2* (1+17)*15 = 135