Длина окружности вычисляется по формуле: с=2ПR, где c - длина окружности R - радиус окружности выразим R: R= c/2П=36П/2П= 18см диаметр в 2 раза больше окружности, значит диаметр(d)=2R=36см
АBCD - равнобедренная трапеция. BC - 30 см. AD - 72 см. AB=CD=75 см (т.к равнобедренная трап.) Проведем две высоты в трапеции, например BM и CH. если вся сторона АD = 72 см, следовательно благодаря тому, что мы провели высоты, MH=BC=30 см, следовательно, чтобы найти АМ и НD нам нужно (72-30) : 2 = 42 : 2 = 21. далее рассмотрим треугольник СНD. мы уже знаем, что СD = 75 см (по условию), а HD = 21 см. третью сторону мы можем узнать, используя теорему Пифагора, она же и будет являться высотой трапеции. СН²=75²-21²=5625-441= 5184 СН= корень из 5184= 72 (см) ответ: высота трапеции= 72 см.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними второго треугольника, то такие треугольники равны.
Дано: ΔАВС и ΔА₁В₁С₁. АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁. Доказать: ΔАВС = ΔА₁В₁С₁. Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁. Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁. Так как АВ = А₁В₁, точки В и В₁ совпадут. Так как АС = А₁С₁, точки С и С₁ тоже совпадут. Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁. Так как треугольники совпали при наложении - они равны.
При доказательстве теоремы используется аксиома: через две точки можно провести единственную прямую.
с=2ПR,
где c - длина окружности
R - радиус окружности
выразим R:
R= c/2П=36П/2П= 18см
диаметр в 2 раза больше окружности, значит диаметр(d)=2R=36см