Площадь ромба равна площади двух треугольников, на которые она делится меньшим основанием. Так как тупой угол ромба 120 градусов, значит острый 60, значит каждый маленький треугольник - равносторонний. Его площадь равна а^2*sqrt(3)/4. Отсюда площадь ромба равна 18* корень из 3.
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство: К и М - середины боковых сторон трапеции ABCD, КМ - ее средняя линия.
Проведем прямую ВМ. ВМ ∩ AD = N.
CM = MD по условию, ∠BCМ = ∠NDM как накрест лежащие при пересечении параллельных AN и ВС секущей CD, ∠BMC = ∠NMD как вертикальные, ⇒ ΔBMC = ΔNMD по стороне и двум прилежащим к ней углам.
Значит, ВМ = MN, то есть КМ - средняя линия треугольника ABN, следовательно КМ║AN, а значит и КМ║AD.
Из равенства треугольников следует, что DN = BC = b, значит AN = AD + BC = a + b, а KM = AN/2 = (a + b)/2 как средняя линия треугольника ABN.
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство: К и М - середины боковых сторон трапеции ABCD, КМ - ее средняя линия.
Проведем прямую ВМ. ВМ ∩ AD = N.
CM = MD по условию, ∠BCМ = ∠NDM как накрест лежащие при пересечении параллельных AN и ВС секущей CD, ∠BMC = ∠NMD как вертикальные, ⇒ ΔBMC = ΔNMD по стороне и двум прилежащим к ней углам.
Значит, ВМ = MN, то есть КМ - средняя линия треугольника ABN, следовательно КМ║AN, а значит и КМ║AD.
Из равенства треугольников следует, что DN = BC = b, значит AN = AD + BC = a + b, а KM = AN/2 = (a + b)/2 как средняя линия треугольника ABN.