1.MO=ON(Т.К. РАДИУСЫ) Доказываем равенство треугольников по свойству касательных из одной точки, Тогда угол KON=MOK и они по 60 градусов. 120/2=60 градусов. Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов, т.е. 2ON=O 2ON=12 /2(ДЕЛИЛИ ОБЕ ЧАСТИ) ON=6 Затем находим всё по теореме Пифагора. KN+ON=OK(все величины в квадрате) KN2+36=144 KN2=144-36=108 градусов. корень из KN=корень из 108 радусов и это 6 корней из 3. KN=KM(по свойству отрезков касательных) ответ:KN=KM=6 корней из 3.
2, 3 и 5 части. Вначале разделяем отрезок пополам (2+3=5 и 5 частей), Для этого проводим окружности из концов отрезка радиусом как отрезок, через точки пересечения окружностей проводим прямую, она разделит наш отрезок пополам вторая часть отрезка (половина исходного отрезка) делится следующим образом: из начала отрезка проводим луч, на нем с циркуля откладываем пять равных отрезков. Конец последнего отрезка соединяем с концом нашего отрезка и через точки на луче проводим прямые параллельные полученному отрезку. Они разобьют нашу исходную половину на пять равных частей. Ставим точку на конце второй от началачасти и имеем разбитый отрезок на три части 2:3:5
медиана в равнобедренном треугольнике является высотой.
Значит треугольник ABM прямоугольный, но катет не может быть больше гипотенузы.
решения нет
(что неясно-пиши в личку)