1) Пусть АВСД - равнобедренная трапеция, в которой АД=а, ВС = b Проведем высоту ВН Если в четырехугольник вписана окружность, значит АВ+СД = а+b, так как АВ=СД , то 2АВ =(а+b), АВ =(а+b)/2 АН = (а-b)/2 Из треугольника АВН: по теореме Пифагора ВН² = ((а+b)/2)²-((а-b)/2)² ВН² =((а+b-a+b)/2)*((а+b+a-b)/2)=(4ab)/4=ab BH =√ab Радиус вписанной окружности в равнобедренной трапеции R=1/2h, где h - высота трапеции значит R=√ab/2, что и требовалось доказать
10. Все стороны ромба равны. Значит его периметр = 8*4 см= 32 см Меньшая диагональ ромба делит его на 2 равнобедренных треугольник. Известно, что угол напротив основания = 60 градусов, значит другме углы(при основании) = (180-60)/2 = 60 градусов. Треугольник, у которого все углы равны, называется равносторонним, а значит меньшая диагональ равна стороне = 8см. ответ: Периметр ромба = 32 см, меньшая диагональ = 8 см.
11. Диагональ (любая) делит ромб на 2 равнобедренных треугольника. Известно, что угол при основании этого треугольника (между диагональю и стороной ромба) = 60 градусов. Т.к. треугольник равнобедренный, то и второй угол между диагональю и ромбом будет 60 градусов. Третий угол = 180-60-60 = 60 градусов. Получаем равносторонний треугольник. Отсюда следует, что сторона ромба = диагонали = 10 см. А периметр = 4*10см= 40 см ответ: 40 см
10. Все стороны ромба равны. Значит его периметр = 8*4 см= 32 см Меньшая диагональ ромба делит его на 2 равнобедренных треугольник. Известно, что угол напротив основания = 60 градусов, значит другме углы(при основании) = (180-60)/2 = 60 градусов. Треугольник, у которого все углы равны, называется равносторонним, а значит меньшая диагональ равна стороне = 8см. ответ: Периметр ромба = 32 см, меньшая диагональ = 8 см.
11. Диагональ (любая) делит ромб на 2 равнобедренных треугольника. Известно, что угол при основании этого треугольника (между диагональю и стороной ромба) = 60 градусов. Т.к. треугольник равнобедренный, то и второй угол между диагональю и ромбом будет 60 градусов. Третий угол = 180-60-60 = 60 градусов. Получаем равносторонний треугольник. Отсюда следует, что сторона ромба = диагонали = 10 см. А периметр = 4*10см= 40 см ответ: 40 см
Проведем высоту ВН
Если в четырехугольник вписана окружность, значит
АВ+СД = а+b, так как АВ=СД , то 2АВ =(а+b), АВ =(а+b)/2
АН = (а-b)/2
Из треугольника АВН: по теореме Пифагора
ВН² = ((а+b)/2)²-((а-b)/2)²
ВН² =((а+b-a+b)/2)*((а+b+a-b)/2)=(4ab)/4=ab
BH =√ab
Радиус вписанной окружности в равнобедренной трапеции R=1/2h,
где h - высота трапеции
значит R=√ab/2, что и требовалось доказать