1) Проекция бокового ребра на основание - это половина диагонали квадрата основания.
То есть: d = 2*12*cos 60° = 24*(1/2) = 12 см.
Сторона основания а = d/√2 = 12/√2 = 6√2 см.
Площадь основания So = a² = 72 см².
Высота пирамиды равна: Н = 12*sin 60° = 12*(√3/2) = 6√3 см.
Объём пирамиды V = (1/3)SoH = (1/3)*72*6√3 = 144√3 см³.
2) Проекция апофемы на основание - это (1/3) высоты основания.
Тогда высота основания h = 3*(Н/tg 60°) = 3*(2√3)/(√3) = 6 см.
Сторона основания а = 6/cos 30° = 6/(√3/2) = 12/√3 = 4√3 см.
Площадь основания So = a²√3/4 = 48√3/4 = 12√3 см².
Получаем ответ:
Объём пирамиды V = (1/3)SoH = (1/3)*(12√3)*(2√3) = 8*3 = 24 см³.
А(х1;у1) и В(х2;у2):
(X-x1)/(x2-x1)=(Y-y1)/(y2-y1).
направляющий вектор этой прямой:
p{p1;p2}, или p{(x2-x1);(y2-y1)}.
Тогда вектор нормали (перпендикуляр к) этой прямой:
n{p2;-p1} или n{(y2-y1);-(x2-x1)}.
Этот же вектор - направляющий вектор для прямой L, проходящей
через точку М((x1+x2)/2;(y1+y2)/2) - середину прямой АВ.
Формула для уравнения прямой, проходящей через точку
M((x1+x2)/2;(y1+y2)/2) и имеющей направляющий вектор
рm{(y2-y1);-(x2-x1)}, то есть уравнение прямой L:
(X-(x1+x2)/2))/(y2-y1)=(Y-(y1+y2)/2)/-(x2-x1) - каноническое уравнение.
Или:
X(x2-x1) + Y(y2-y1) -(1/2)*[x2²-x1²+y2²-y1²] - общее уравнение с коэффициентами А=(x2-x1), В=(y2-y1) и С= -(1/2)*[x2²-x1²+y2²-y1²].
Второй вариант (для тех, кто еще не знает о направляющих и нормальных векторах, но знают о различных видах уравнений прямых):
из канонического уравнения имеем:
X(y2-y1)-x1(y2-y1)=Y(x2-x1)-y1(x2-x1) =>
Y(x2-x1)=X(y2-y1)-y1(x2-x1) =>
Y=X((y2-y1)/(x2-x1) -x1(y2-y1)/(x2-x1)+y1.
Это уравнение прямой с угловым коэффициентом k=(y2-y1)/(x2-x1).
Условие перпендикулярности прямых: k1=-1/k.
Уравнение прямой L, перпендикулярной прямой AB и проходящей через точку М((x2+x1)/2;(y2+y1)/2)) (середина отрезка АВ), находим по формуле:
Y-Ym=k1(X-Xm) или
Y-(y2-y1)/2=-((x2-x1)/(y2-y1))*(X-(x2+x1)/2) отсюда общее уравнение прямой L:
X(x2-x1)+Y(y2-y1)-(y2²-y1²)/2-(x2²-x1²)/2=0 или
X(x2-x1) + Y(y2-y1) -(1/2)*(x2²-x1²+y2²-y1²).
Для проверки решения возьмем точки с реальными координатами и построим график(смотри приложение).