Диагонали взаимно перпендикулярны, кроме того, углы, образованные ими, равны, а также точкой пересечения диагонали делятся пополам. Пусть О - точка пресечения диагоналей, тогда AO = AC = 16√3, BO = OD = 16. По теореме Пифагора находим гипотенуза AB, которая будет равна √(AO²+OB²) = √(16²+(16√3)²) = √(256+768) = √1024 = 32 => гипотенуза в два раза больше противолежащего катета => угол ABO = 30° => угол ABC =60°, т.к. угол CBO = ABO = 30°. Тогда угол ADC = 60°, т.к. противоположные углы ромба равны. Находим далее угол BAD + BCD, которые равны 360° - угол ABC - ADC = 360°-60°-60° = 240°. Значит, угол BAD = DCB = 1/2*240° = 120°.
1) Любые две плоскости имеют общую прямую, на которой лежат все общие точки этих плоскостей. НЕ ВЕРНО У пары параллельных плоскостей нет общих точек, и соответственно, общей прямой.
2) Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости. ВЕРНО
3) Через любую точку пространства, не лежащую в данной плоскости, проходит бесконечно много прямых, параллельных данной плоскости. ВЕРНО Через эту точку можно провести плоскость, параллельную данной, и в ней пучок прямых, каждая из которых будет параллельна данной плоскости.
4) Если в пространстве две прямые перпендикулярны третьей прямой, то эти две прямые параллельны. НЕ ВЕРНО Эти две прямые могут быть скрещивающимися.
Из 10 класса: Рассмотрим прямую а и точку М, не лежащую на этой прямой. Через прямую а и точку М прохолит плоскость, и притом только одна. Обозначим эту плоскость буквой b. Прямая, проходящая черещ точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т. е. должна лежать в плоскости b. Но в плоскости b через точку М проходит прямая, параллельная прямой а, и притом только одна.(пусть это будет прямая с) Итак, с - единственная прямая, проходящая через точку М параллельно прямой а.