В треугольнике две стороны равны 10 см и 17 см, а высота, опущенная на третью, равна 8 см. найти наименьшую из площадей возможных треугольников
Объяснение:
S(треуг)= 1/2*а*h. Пусть АВ=17 см,ВС=10 см, ВН=8 см, ВН ⊥АС.
Возможные треугольники с высотой равной 8 см это ΔАВС, ΔАВН, ΔВСН. У всех перечисленных треугольников одинаковая высота, значит чем меньше основание , тем меньше площадь треугольника.
АС >АН и АС>СН, тк АС это сумма АН и СН.
Т.к ВН-высота, то АВ и ВС наклонные . А чем больше длина наклонной , тем больше проекция : АВ>BC⇒АН>СН.
Значит СН<AH<AC.
ΔCВН-прямоугольный , по т. Пифагора НС=√(10²-8²)=6 (см)
S(ΔCBH)=1/2*6*8=48 (см²)
1) Так как треугольник ВАМ (расстояние между В и М соединяем линией) прямоугольный, воспользуемся теоремой Пифагора для нахождения МВ;
МВ²=МА²+АВ²
МВ²=1²+3²
МВ=√10 см
2) ∆МАД также прямоугольный, так что повторяем предыдущие шаги:
МД²=1²+4²
МД=√17 см
(Напоминаю, что длина и расстояние – одно и то же).
3) Диагонали ромба в точке пересечения делятся на двое, так что АД=АС=4 см.
4) По теореме Пифагора ВД²=ВА²+АД²;
ВД²=3²+4²
ВД=√25=5 см
(Диагонали ромба в точке пересечения создают прямой угол).
5) В 3-ем пункте мы нашли отрезок АС, так что теперь приступаем к теореме Пифагора:
МС²=1²+4²
МС=√17 см.
6) Площадь прямоугольного треугольника равна произведению его катетов деленое на два.
Так что S ∆mac = 4×1÷2 = 2 см²
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².