с прямым углом
, EF — биссектриса
,
, FG — искомый отрезок.
.
— биссектриса, то
(биссектриса
делит
на два равные угла).
(это следует из условия: так как
прямоугольный, то и
; так как
— расстояние от
до
, то
).
и
, то и третий угол первого треугольника равен третьему углу второго треугольника:
. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:

.
является для обоих треугольников общей.
(второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (
— сторона, а
— два прилежащих угла)).
соответствует
, тогда:
. Смотрите второй рисунок.
Так как А1А перпендикулярно двум пересекающимся прямым АВ и AD из плоскости ABCD, то А1А перпендикулярно плоскости ABCD. И так как В1В параллельно А1А, то В1В так же перпендикулярно ABCD. В1D - наклонная к ABCD, ВD - проекция. Треуг. B1BD-прямоугольный. Найдем сторону BD из прямоуг. треуг. ABD.
BD=√(AB^2+AD^2)=√(144+256)=20см
В1В=√(B1D^2-BD^2)=√(625-400)=√225=15см.
ответ: 15 см.