построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
Как то так!
Задача: Высоты треугольника ABC пересекаются в точке O. Величина угла ∡BAC = 63°, величина угла ∡ABC = 72°. Определить угол ∡AOB.
Р-м Δ ABE:
∡AEB = 90°, ∡ABE = 72° (∡ABE ∈ ∡ABC).
Исходя из теоремы о сумме углов треугольника, градусная мера ∡BAE будет равна:
∡BAE = 180−(∡AEB+∡ABE)=180−(90+72) = 180−162 = 18°.
Р-м Δ ABD:
∡ADB = 90°, ∡BAD = 63° (∡BAD ∈ ∡BAC)
Исходя из теоремы о сумме углов треугольника, градусная мера ∡ABD будет равна:
∡ABD = 180−(∡ADB+∡BAD) = 180−(90+63) =180−153 = 27°.
По аналогии, угол ∡AOB в Δ ABO равен:
∡AOB = 180−(∡BAO+ABO) = 180−(18+27) = 180−45 = 135°
ответ: ∡AOB = 135°.
Задача: В равнобедренном треугольнике ABC с основанием AC к стороне BC проведена высота AM и биссектриса AN. Найти угол ∡MAN, если ∡B = 22°.
Р-м Δ ABC:
∡B = 22°, ∡A = ∡C = (180−22)/2 = 158/2 = 79°
Р-м Δ ACM:
∡AMC = 90°, ∡ACM = 79° ⇒ ∡CAM = 180−(90+79) = 180−169 = 11°.
∡BAN = ∡CAN = 79/2 = 39,5°, т.к. AN — биссектриса
Тогда ∡MAN = ∡CAN−∡CAM = 39,5−11 = 28,5°
ответ: ∡MAN = 28,5°.