Объяснение:
12)
СО=1/2*АВ=1/2*18=9 см радиус
<СОВ=2*<САВ=2*20°=40° центральный угол.
Sсегм=1/2*СО²(π*40°/180°-sin<COB)=
=1/2*9²*(2π/9-sin40°)=1/2*81*(2π/9-0,6427)=
=40,5(2π/9-0,6427)=81π/9-26,02935=
=9*3,14-26,02935=28,26-26,02935≈
≈2,23 см²
ответ: 2,23см²
13)
R=1/2*AB=1/2*4=2 ед радиус полукруга
Sп.кр.=1/2*πR²=1/2*π*2²=2π ед²
r=1/2*R=1/2*2=1 ед радиус меньшей окружности.
Sм.кр.=πr²=π*1²=π ед²
Sз.ф.=Sп.кр.-Sм.кр.=2π-π=π ед²
ответ: площадь заданной фигуры равно π ед²
Обозначения:
Sп.кр- площадь полукруга
Sм.кр.- площадь меньшего круга
Sз.ф.- площадь заданной фигуры
14)
S(ABCDEF)=6*AB²√3/4=6*6²√3/4=54√3≈
≈93,53eд²
Радиус равен стороне шестиугольника
R=6ед.
Sч.кр=4/6*πR²=4/6*6²*3,14=24*3,14≈
≈75,36 ед²
Sз.ф.=S(ABCDEF)-Sч.кр.=93,53-75,36=
=18,2 ед²
ответ: 18,2 ед²
Обозначения
Sч.кр.- площадь части круга.
Sз.ф.- площадь заданной фигуры
Задание №1
Объяснение:
Пирамида SABCD. Апофема SH - высота треугольника SAB. O - точка пересечения диагоналей основания, SO - высота пирамиды.
1) Рассмотрим прямоугольный треугольник OHS. По теореме пифагора:
OH² = SH² - SO²
OH² = 4a² - 3a²
OH = a
По теореме Фалеса: BC = 2OH = 2a
Сторона основания 2a
2) SHO - линейный угол двугранного угла SABO. Найдя его, найдем и SABO, следовательно угол между боковой гранью и основанием.
Из прямоугольного треугольника SHO:
sin<SHO = SO/SH
sin<SHO = a√3/2a = √3/2
<SHO = 60°
Угол между боковой гранью и основанием 60°
3) S = Sбок + Sосн
В основании квадрат, значит Sосн = AB² = (2a)² = 4a²
Sбок = Pосн*SH/2
Pосн = 4*2a = 8a
Sбок = 8a*2a/2 = 8a²
S = 8a² + 4a² = 12a²
Площадь 12а²
4) Из точки О (это и есть центр основания) проводим перпендикуляр к апофеме SH, обозначаем H1. SH1 - расстояние от центра основания до плоскости боковой грани.
Из прямоугольного треугольника OH1H:
sin<SHO = OH1/OH
но sin<SHO = √3/2
√3/2 = OH1/a
OH1 = a√3/2
ответы: a; 60°; 12а²; a√3/2