Пусть о – центр окружности, аbсdef – данный шестиугольник сторона шестиугольника ab=а=6см. для шестиугольника радиус описанной окружности равен стороне шестиугольника r=a r=6 см центральный угол правильного шестиугольника равен 360\6=60 градусов площадь кругового сектора вычисляется по формуле sкс=pi*r^2*альфа\360 градусов где r – радиус круга, а альфа - градусная мера соответствующего угла. sкс=pi*6^2*60 градусов\360 градусов= 6*pi см^2 площадь треугольника аоb равна аb^2*корень (3)\4= =6^2 *корень (3)\4=9*корень (3) см^2 . площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой= площадь кругового сектора- площадь треугольника аос площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой (площадь меньшей части круга, на которые его делит сторона шестиугольника) = =6*pi- 9*корень (3) см^2 . ответ: 6*pi см^2, 6*pi- 9*корень (3) см^2
В треуг.АВС проведем медианы( они же высоты) АК,СD,ВР Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота АК делит сторону ВС пополам. ВС=ВК+КС ВК=КС=3:2=1,5 - катет АС=3 - гипотенуза Находим катет АК (теор.Пифагора): АК2=АС2 - КС2 АК2=3*3 - 1,5*1,5 АК=корень из 6,75 АК=2,598 Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1 АО+ОК=3(части) - составляют 2,598 АО=2части, АО=2,598:3*2=1,732 Рассмотрим треуг.АОМ ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС Находим АМ(теор.Пифагора): АМ2=АО2+ОМ2 Ом=1;АО=1,732; АМ2=1*1+1,732*1,732 АМ=корень из 4 АМ=2 Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому