Соединим точки A и D, D и C, С и B. Пусть AC∩BD=E.
∠ADB и ∠ACB вписанные и опирающиеся на хорду AB. Тогда они равны. Т.к. AB - диаметр, ∠ADB = ∠ACB = 90°.
Применив т. об отрезках пересекающихся хорд к хордам AC и DB, получим AE*EC=DE*EB.
Обозначим DE=a, EB=b, AE=c → с*EC=a*b → EC=a*b/c
AC ּ AE + BD ּ BE = (AE+EC)*AE+(BE+ED)*BE=c²+a*b+b²+a*b=c²+2ab+b²=(c²-a²)+(a+b)²=[по т. Пифагора для ΔADE (c²-a²)=AD². DB²=(DE+EB)²=(a+b)²]=AD²+DB²=[по т. Пифагора для ΔADB]=AB²
Т.к. AB - диаметр окружности, то значение AC ּ AE + BD ּ BE не зависит от положения точки E.
Проекции равных наклонных, проведенных из одной точки на плоскость, равны.
Рассмотрим рисунок, данный в приложении.равны.
В₁А₁ - прямая, проведенная параллельно плоскости через С-середину АВ.
Для отрезка ВС длина его проекции КМ равна -СВ₁,
для отрезка АС длина его проекции МЕ=СА₂. ⇒
КМ=МЕ
Пусть расстояние от С до плоскости равно х.
Тогда КВ₁=ЕА₁=х
ВВ₁=3-х
АА₁=2+х
Выразим из треугольников ВСВ₁ и АСА₁ по т. Пифагора длину проекций равных наклонных АС и ВС.
(СВ₁)²=ВС²-ВВ₁²
(СА₁)²=АС²-АА₁²
ВС²-ВВ₁²=АС²-АА₁²
6,5² -(3-х)²=6.5²-(2+х)²
-(3-х)²=-(2+х)²
- (9-6х+х²)= - (4+4х+х²)
-9+6х-х²=-4-4х-х²
10х=5
х=0,5
(СА₁)²=АС²-АА₁²
АА₁=2,5
СА₁²= 6,5²-2,5²=36
СА₁=6
Проекции отрезков АС и ВС равны 6 см