Площадь треугольника (то бишь боковой грани пирамиды) S=(a * hтреуг)/2 hтреуг - в данном случае это апофема нашей пирамиды Чтобы найти апофему рассмотрим треугольник образованный высотой пирамиды, апофемой и радиусом вписанной окружности между апофемой и высотой). У него угол при основании равен 45° (по условию), угол у основания высоты - 90°, следовательно, угол, образованный высотой и апофемой также 45°, значит, этот треугольник - равнобедренный, и радиус вписанной окружности равен высоте и равен 6 см. Значит сторона основания, равная диаметру вписанной окружности, равна 6*2=12 см. Апофема вычисляется по теореме Пифагора (т.к. наш равнобедренный треугольник еще и прямоугольный). Апофема равна √6²+6² = √72≈8,5 см. Отсюда: а) площадь боковой поверхности S=(12*8.5)/2=51 см² б) площадь всей поверхности S=((12*8.5)/2)*4+12*12=204+144=348 см²
Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°