1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
Объяснение: В ΔМNK из точки М проведите дугу окружности так, чтобы пересечь прямую NK в двух точках Р и Q. Затем поочереди из двух точек Р и Q проведите дуги одинакового радиуса на полу- плоскости относительно прямой NK, где нет точки М. Назовём точку пересечения этих дуг точкой А. Соединим М и А, получим МН ⊥ NK.
Описание: 1) окр (М; r) ∩ MK, получим Р и Q.
2) окр (Р; R) ∩ окр (К; R) = А.
3) МА ∩ NK = Н, МН- искомая высота Δ МNК.
В ΔСДР проведём поочерёдно две дуги одинаковым радиусом больше половины отрезка ДР навстречу друг другу из точек Д и Р. Эти дуги пересекутся в двух точках М и N. Соединим отрезком точки М и N.
Точку пересечения МN и ДР обозначим точкой К. Проведём отрезок СК, который и будет медианой ΔСДР.
Описание: 1)окр (Д; R) ∩ окр(Р; R), получим М и N.
2) MN ∩ ДР = К, СК- искомая медиана ΔСДР.
P.S. Если непонятно обозначение окружности в описании, то:
окр ( Р; R) - обозначение окружности с центром в Р и радиусом R.
По теореме Пифагора найдем АВ(гипотенузу)
АВ= √400+√441=√841=29