Возведем под корень; получится корень из 75 и корень из 25 , у нас получится соотношение как 1:3 следовательно углы будут в таком же соотношении и ровняются 120;60;120;60 градусов
(х-а)²+(у-в)²=R²- уравнение окружности где (а;в)-координаты центра окружности R--радиус (х-2)²+(у-3)²=4² (х-2)²+(у-3)²=16 начало координат имеет координаты О(0;0) (х-0)²+(у-0)²=(5/2)² x²+y²=25/4 (R=5/2) X²+y²=25 (R=5) 2. C x=(2+4)÷2 y=(7+5)÷2 x=3 y=6 C (3 ; 6) координаты середины отрезка находятся за формулой х=(х1+х2)÷2; у=(у1+у2)÷2 где (х1; у1) (х2;у2) координаты конца отрезка АВ ((4-2); (7-5)) АВ (2;2) АВ²=(4-2)²+(7-5)²=2²+2²=4+4=8 АВ=√8=√4·2=√2²·2=2√2 y=kx+b уравнение прямой если прямая проходит через точки значит ее координаты удовлетворяют уравнение прямой 5=2k+b (×-1) -5=-2k-b 7=4k+b первое уравнение + второе 2=2k k=2/2=1 5=2·1+b b=5-2=3 y=x+3 уравнение прямой которая проходит через точки А и В
Пусть a - основание, h - высота к основанию, b - боковая сторона, H - высота к ней. Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения. 1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О. 2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника. 3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α; 4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1. 5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника. Это всё.